Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

10-(Prop-2-yn-1-yl)-2,7-diazaphenothiazine¹

Beata Morak-Młodawska,^a Kinga Suwińska,^{b,c} Krystian Pluta^a* and Małgorzata Jeleń^a

^aDepartment of Organic Chemistry, The Medical University of Silesia, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland, ^bInstitute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland, and ^cFaculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, ul. Wóycickiego 1/3, 01 938 Warszawa, Poland

Correspondence e-mail: pluta@sum.edu.pl

Received 3 April 2012; accepted 26 April 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.114; data-to-parameter ratio = 15.6.

In the title molecule [systematic name: 10-(prop-2-yn-1-yl)dipyrido[3,4-b:3',4'-e][1,4]thiazine], $C_{13}H_9N_3S$, the dihedral angle between the two pyridine rings is 146.33 (7)° and the angle between two halves of the thiazine ring is 138.84 (8)°, resulting in a butterfly shape for the tricyclic system. The central thiazine ring adopts a boat conformation, with the 2propynyl substituent at the thiazine N atom located in a pseudo-equatorial position and oriented to the concave side of the diazaphenothiazine system. In the crystal, molecules are arranged via π - π interactions between the pyridine rings [centroid-centroid distances = 3.838 (1) and 3.845 (1) Å] into stacks extending along [001]. There are C-H···C and C-H···N interactions between molecules of neighbouring stacks.

Related literature

For recent literature on the biological activity of phenothiazines, see: Aaron *et al.* (2009); Pluta *et al.* (2011). For the structure of 10-(2-propynyl)phenothiazine and its transformations into anticancer derivatives, see: Bisi *et al.* (2008). For the synthesis and the anticancer and immunosuppressive activity of 2,7-diazaphenothiazines, see: Morak-Młodawska & Pluta (2009); Zimecki *et al.* (2009); Pluta *et al.* (2010). For planar and folded structures of the 2,7-diazaphenothiazine system, see: Morak *et al.* (2002); Morak-Młodawska *et al.* (2010). For alkylation of azaphenothiazines, see: Pluta *et al.* (2009).

 $V = 1070.20 (12) \text{ Å}^3$

 $0.60 \times 0.50 \times 0.35$ mm

2407 independent reflections

2011 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.28 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.041$

Z = 4

Experimental

Crystal data
$C_{13}H_9N_3S$
$M_r = 239.29$
Monoclinic, $P2_1/c$
a = 14.1150 (9) Å
b = 10.1909 (6) Å
c = 7.6749 (5) Å
$\beta = 104.212 \ (3)^{\circ}$

Data collection

Nonius KappaCCD diffractometer upgraded with APEXII detector 7015 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 154 parameters $wR(F^2) = 0.114$ H-atom parameters constrainedS = 1.11 $\Delta \rho_{max} = 0.45$ e Å $^{-3}$ 2407 reflections $\Delta \rho_{min} = -0.35$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C4-H4\cdots N2^{i}$ $C13-H13\cdots C11^{ii}$ $C12-H12\cdots C12^{ii}$	0.95 0.95	2.62 2.78	3.457 (3) 3.677 (3)	147 159
$C13-H13\cdots C12^{i}$ $C3-H3\cdots C13^{i}$ $C8-H8\cdots C13^{iii}$	0.95 0.95 0.95	2.78 2.78 2.69	3.686 (3) 3.662 (3) 3.407 (3)	161 155 133
Symmetry codes: -x + 1, -y, -z + 1	(i) -x + 2	$2, y + \frac{1}{2}, -z + \frac{3}{2};$	(ii) <i>x</i> , - <i>y</i> -	$\frac{1}{2}, z + \frac{1}{2};$ (iii)

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The work was supported by the Medical University of Silesia (grant KNW-1–073/P/1/0).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2475).

¹ Azinyl sulfides. Part CXXVII.

References

- Aaron, J. J., Gaye Seye, M. D., Trajkovska, S. & Motohashi, N. (2009). Top. Heterocycl. Chem. 16, 153–231.
- Bisi, A., Meli, M., Gobbi, S., Rampa, A., Tolomeo, M. & Dusonchet, L. (2008). Bioorg. Med. Chem. 16, 6474–6482.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Morak, B., Pluta, K. & Suwińska, K. (2002). Heterocycl. Commun. 8, 331-334.
- Morak-Młodawska, B. & Pluta, K. (2009). Heterocycles, 78, 1289-1298.
- Morak-Młodawska, B., Pluta, K., Suwińska, K. & Jeleń, M. (2010). *Heterocycles*, **81**, 2511–2522.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pluta, K., Jeleń, M., Morak-Młodawska, B., Zimecki, M., Artym, J. & Kocięba, M. (2010). *Pharmacol. Rep.* 62, 319–332.
- Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2009). J. Heterocycl. Chem. 46, 355–391.
- Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2011). Eur. J. Med. Chem. 46, 3179–3189.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zimecki, M., Artym, J., Kocięba, M., Pluta, K., Morak-Młodawska, B. & Jeleń, M. (2009). Cell. Mol. Biol. Lett. 14, 622–635.

supplementary materials

Acta Cryst. (2012). E68, o1590-o1591 [doi:10.1107/S1600536812018879]

10-(Prop-2-yn-1-yl)-2,7-diazaphenothiazine

Beata Morak-Młodawska, Kinga Suwińska, Krystian Pluta and Małgorzata Jeleń

Comment

Phenothiazines exhibit not only recognized neuroleptic, antihistaminic and antitussive activities but recently also anticancer, antibacterial and reversal multidrug resistance [Aaron et al., (2009); Pluta et al., (2011)]. The modifications of the phenothiazine structures are mainly directed into the introduction of new pharmacophoric substituents at the thiazine nitrogen atom and the substitution of the benzene ring with an azine ring (Pluta et al., 2009, 2011). Synthesis of substituted 10-(2-propynyl)phenothiazines and their transformations into various aminobutynyl derivatives of anticancer and multidrug resistance reverting activities was reported by Bisi et al. (2008). We modified the phenothiazine structure via the substitution of the benzene ring with the pyridine ring to form 2,7-diazaphenothiazines (Morak-Młodawska & Pluta, 2009) possessing anticancer and immunosuppressive activities (Zimecki et al., 2009; Pluta et al. 2010). Alkylation of azaphenothiazines proceeds at the thiazine and/or the azine nitrogen atoms, depending on the reaction conditions (Pluta et al., 2009). N-Alkylation of 10H-2,7-diazaphenothiazine led to both types of the products showing planar and folded 2.7-diazaphenothiazine ring system (Morak-Młodawska et al., 2010). 10H-2.7-Diazaphenothiazine was transformed into the title compound, C₁₃H₉N₃S, a convenient substrate to other 2,7-diazaphenothiazine derivatives using aminomethylation or 1,3-dipolar cycloaddition. The X-ray study showed the propynyl group to be attached to the thiazine nitrogen atom. In the molecule, the butterfly angle between the two pyridine rings is 146.33 (7)° and the angle between two halves of the thiazine ring is 138.84 (8)°. The 2-propynyl substituent is in a pseudo-equatorial position with the angle S5...N10-C11 of 163.8 (2)° and directed to the concave side of the diazaphenothiazine system with the angle between the N10/C11/C12/C13 and C4a/C5a/C9a/C10a planes of 86.3 (1)°. The thiazine nitrogen atom shows pyramidality as the sum of the C-N10-C bond angles is 356.1 (1)°. Hydrogen bond C4-H4...N2 (Table 1) results in one-dimensional polymeric chain parallel to the b axis. Acidic hydrogen atom H13 is in close contact to C11 and C12 atoms of the propynyl substituent (both H···C distances equal to 2.78 Å). This suggests, that H13 is involved in C-H···C interactions to these two carbon atoms rather than in the C–H··· π interaction to the π system of the triple C12=C13 bond (H13···center_{C12=C13}) distance of 2.96 Å). Additionally, the C12 \equiv C13 bond π electrons interact with two aromatic H atoms (H3 and H8) of two other adjacent molecules with short C-H···C intermolecular contacts (less than the sum of van der Waals radii) between H3 and H8, and C13 (see Table 1). On the basis of these interactions a three-dimensional network is formed. Molecules π -stack along the c axis. Aromatic rings N2/C1/C10a/C4a/C4/C3 π -stack with centroid-to-centroid distance of 3.845 (1) Å, similarly, for rings N7/C6/C5A/C9A/C9/C8 the centroid-to-centroid distance is 3.838 (1) Å (see Figure 2).

Experimental

To a suspension of 10H-2,7-diazaphenothiazine (100 mg, 0.5 mmol) in 5 ml DMF potassium *tert*-butoxide (80 mg, 0.72 mmol) was added. The mixture was stirred at room temperature for 1 h. Then a solution of propargyl bromide (80 mg, 0.64 mmol) in toluene was added dropwise. The solution was stirred at room temperature for 24 h and poured into water (15 ml), extracted with methylene chloride (15 ml), dried with Na₂SO₄ and evaporated to the brown oil. The residue was

purified by column chromatography (silica gel, CHCl₃) to yield 10-(2-propynyl)-2,7-diazaphenothiazine (72 mg, 60%), mp. 149–150°C. ¹H NMR in CDCl₃: δ 2.57 (t, J = 2.5 Hz, 1H), 4.54(d, J = 2.5 Hz, 2H), 7.14 (m, 2H, H-9, H-4), 8.12 (s, 1H, H-1), 8.22 (d, J = 5.5 Hz, H-3), 8.35 (d, J = 5.5 Hz, H-8), 8.40 (s, 1H, H-6). FAB MS: 240 (*M*+H, 100), 201 (M—CH₂CCH+1, 45).

Refinement

All H atoms in the were treated as riding atoms in geometrically idealized positions, with C–H distances of 0.95 (aromatic and acetylene) or 0.99 Å (methylene), and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Computing details

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP1II* (Burnett & Johnson, 1996) and Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

ORTEP drawing with displacement ellipsoids shown at the 50% probability level.

F(000) = 496

 $\theta = 2.5 - 27.5^{\circ}$

 $\mu = 0.28 \text{ mm}^{-1}$

Block, yellow

 $0.60 \times 0.50 \times 0.35 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.485 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2229 reflections

Figure 2

Crystal packing shown along the c axis.

10-(Prop-2-yn-1-yl)-2,7-diazaphenothiazine

Crystal data C₁₃H₉N₃S

 $M_r = 239.29$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.1150 (9) Å b = 10.1909 (6) Å c = 7.6749 (5) Å $\beta = 104.212$ (3)° V = 1070.20 (12) Å³ Z = 4

Data collection

Nonius KappaCCD	2407 independent reflections
diffractometer upgraded with APEXII detector	2011 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.041$
Graphite monochromator	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.4^{\circ}$
Detector resolution: 8.3 pixels mm ⁻¹	$h = -18 \rightarrow 18$
ω scan	$k = -12 \rightarrow 13$
7015 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.114$	neighbouring sites
S = 1.11	H-atom parameters constrained
2407 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0285P)^2 + 1.4885P]$
154 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.92188 (15)	0.1074 (2)	0.5605 (3)	0.0172 (4)
H1	0.9145	0.0148	0.5522	0.021*
C3	1.01573 (17)	0.2865 (2)	0.6685 (3)	0.0218 (5)
Н3	1.0762	0.3225	0.7335	0.026*
C4	0.94013 (16)	0.3721 (2)	0.5945 (3)	0.0195 (5)
H4	0.9479	0.4640	0.6135	0.023*
C4a	0.85325 (16)	0.3212 (2)	0.4927 (3)	0.0159 (4)
C5a	0.65940 (16)	0.3263 (2)	0.3914 (3)	0.0164 (4)
C6	0.57174 (16)	0.3834 (2)	0.4013 (3)	0.0197 (5)
H6	0.5703	0.4759	0.4161	0.024*
C8	0.49541 (17)	0.1852 (2)	0.3756 (3)	0.0226 (5)
H8	0.4377	0.1351	0.3665	0.027*
C9	0.58017 (16)	0.1180 (2)	0.3718 (3)	0.0192 (5)
Н9	0.5801	0.0249	0.3640	0.023*
C9a	0.66564 (15)	0.1889 (2)	0.3797 (3)	0.0154 (4)
C10a	0.84271 (15)	0.1850 (2)	0.4757 (3)	0.0147 (4)
C11	0.75374 (17)	-0.0072 (2)	0.3179 (3)	0.0182 (5)
H11a	0.8152	-0.0251	0.2819	0.022*
H11b	0.6992	-0.0198	0.2102	0.022*
C12	0.74397 (16)	-0.1054 (2)	0.4530 (3)	0.0194 (5)
C13	0.73370 (18)	-0.1884 (3)	0.5542 (4)	0.0284 (6)
H13	0.7254	-0.2552	0.6356	0.034*
S5	0.75938 (4)	0.42507 (5)	0.37659 (8)	0.01880 (16)
N2	1.00796 (13)	0.15579 (19)	0.6532 (3)	0.0204 (4)
N7	0.48877 (14)	0.3163 (2)	0.3912 (3)	0.0226 (4)
N10	0.75434 (13)	0.12936 (18)	0.3721 (2)	0.0158 (4)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0160 (10)	0.0151 (10)	0.0217 (11)	0.0027 (8)	0.0071 (9)	0.0011 (8)
C3	0.0170 (11)	0.0228 (12)	0.0250 (12)	-0.0042 (10)	0.0041 (9)	-0.0051 (10)
C4	0.0194 (11)	0.0165 (10)	0.0244 (12)	-0.0023 (9)	0.0085 (9)	-0.0050 (9)
C4a	0.0165 (10)	0.0147 (10)	0.0178 (11)	0.0005 (8)	0.0070 (8)	0.0003 (8)
C5a	0.0176 (10)	0.0166 (10)	0.0142 (10)	0.0009 (8)	0.0025 (8)	0.0013 (8)
C6	0.0195 (11)	0.0186 (10)	0.0197 (11)	0.0028 (9)	0.0023 (9)	-0.0007 (9)
C8	0.0168 (11)	0.0245 (12)	0.0250 (12)	-0.0011 (9)	0.0024 (9)	-0.0024 (10)
С9	0.0175 (10)	0.0170 (10)	0.0217 (11)	-0.0004 (9)	0.0022 (9)	-0.0013 (9)
C9a	0.0155 (10)	0.0156 (10)	0.0143 (10)	0.0027 (8)	0.0022 (8)	-0.0005 (8)
C10a	0.0141 (10)	0.0144 (10)	0.0169 (11)	-0.0017 (8)	0.0064 (8)	0.0000 (8)
C11	0.0199 (11)	0.0136 (10)	0.0218 (11)	0.0011 (9)	0.0064 (9)	-0.0028 (9)
C12	0.0149 (10)	0.0177 (10)	0.0250 (12)	0.0000 (9)	0.0037 (9)	-0.0034 (9)
C13	0.0256 (13)	0.0242 (12)	0.0360 (15)	0.0034 (10)	0.0086 (11)	0.0067 (11)
S5	0.0187 (3)	0.0143 (3)	0.0241 (3)	0.0015 (2)	0.0066 (2)	0.0035 (2)
N2	0.0131 (9)	0.0226 (10)	0.0248 (10)	0.0021 (8)	0.0033 (7)	-0.0002 (8)
N7	0.0164 (9)	0.0244 (10)	0.0254 (11)	0.0039 (8)	0.0020 (8)	-0.0014 (8)
N10	0.0119 (8)	0.0185 (9)	0.0167 (9)	0.0014 (7)	0.0030 (7)	-0.0005 (7)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N2	1.342 (3)	С6—Н6	0.9500
C1—C10a	1.393 (3)	C8—N7	1.347 (3)
C1—H1	0.9500	C8—C9	1.385 (3)
C3—N2	1.339 (3)	C8—H8	0.9500
C3—C4	1.387 (3)	С9—С9а	1.395 (3)
С3—Н3	0.9500	С9—Н9	0.9500
C4—C4a	1.383 (3)	C9a—N10	1.405 (3)
C4—H4	0.9500	C10a—N10	1.422 (3)
C4a—C10a	1.398 (3)	C11—N10	1.452 (3)
C4a—S5	1.758 (2)	C11—C12	1.471 (3)
C5a—C6	1.386 (3)	C11—H11a	0.9900
C5a—C9a	1.407 (3)	C11—H11b	0.9900
C5a—S5	1.760 (2)	C12—C13	1.181 (3)
C6—N7	1.342 (3)	C13—H13	0.9500
N2—C1—C10a	123.9 (2)	С8—С9—Н9	120.5
N2—C1—H1	118.1	С9а—С9—Н9	120.5
C10a—C1—H1	118.1	C9—C9a—N10	122.98 (19)
N2—C3—C4	123.5 (2)	C9—C9a—C5a	116.82 (19)
N2—C3—H3	118.3	N10—C9a—C5a	120.18 (19)
С4—С3—Н3	118.3	C1—C10a—C4a	117.7 (2)
C4a—C4—C3	118.8 (2)	C1C10aN10	121.87 (19)
C4a—C4—H4	120.6	C4a—C10a—N10	120.42 (19)
С3—С4—Н4	120.6	N10-C11-C12	116.42 (19)
C4—C4a—C10a	119.0 (2)	N10-C11-H11a	108.2
C4—C4a—S5	120.91 (17)	C12-C11-H11a	108.2
C10a—C4a—S5	120.04 (17)	N10-C11-H11b	108.2

C6—C5a—C9a	119.5 (2)	C12—C11—H11b	108.2
C6—C5a—S5	120.26 (17)	H11a—C11—H11b	107.3
C9a—C5a—S5	120.09 (16)	C13—C12—C11	176.5 (3)
N7—C6—C5a	124.1 (2)	С12—С13—Н13	180.0
N7—C6—H6	117.9	C4a—S5—C5a	98.00 (10)
С5а—С6—Н6	117.9	C3—N2—C1	117.1 (2)
N7—C8—C9	124.9 (2)	C6—N7—C8	115.6 (2)
N7—C8—H8	117.6	C9a—N10—C10a	118.21 (18)
С9—С8—Н8	117.6	C9a—N10—C11	118.89 (18)
C8—C9—C9a	119.0 (2)	C10a—N10—C11	119.00 (18)
N2—C3—C4—C4a	-2.9 (4)	C4—C4a—S5—C5a	-148.01 (19)
C3—C4—C4a—C10a	3.3 (3)	C10a—C4a—S5—C5a	35.26 (19)
C3—C4—C4a—S5	-173.43 (17)	C6—C5a—S5—C4a	148.16 (19)
C9a—C5a—C6—N7	-3.6 (4)	C9a—C5a—S5—C4a	-36.6 (2)
S5—C5a—C6—N7	171.68 (18)	C4—C3—N2—C1	0.1 (3)
N7—C8—C9—C9a	-1.8 (4)	C10a—C1—N2—C3	2.2 (3)
C8—C9—C9a—N10	-178.4 (2)	C5a—C6—N7—C8	1.9 (3)
C8—C9—C9a—C5a	0.1 (3)	C9—C8—N7—C6	0.8 (4)
C6—C5a—C9a—C9	2.4 (3)	C9—C9a—N10—C10a	-144.8 (2)
S5—C5a—C9a—C9	-172.88 (17)	C5a—C9a—N10—C10a	36.8 (3)
C6—C5a—C9a—N10	-179.1 (2)	C9—C9a—N10—C11	12.8 (3)
S5—C5a—C9a—N10	5.6 (3)	C5a—C9a—N10—C11	-165.6 (2)
N2—C1—C10a—C4a	-1.7 (3)	C1—C10a—N10—C9a	142.9 (2)
N2-C1-C10a-N10	177.10 (19)	C4a—C10a—N10—C9a	-38.3 (3)
C4—C4a—C10a—C1	-1.2 (3)	C1-C10a-N10-C11	-14.6 (3)
S5—C4a—C10a—C1	175.63 (16)	C4a—C10a—N10—C11	164.16 (19)
C4—C4a—C10a—N10	179.98 (19)	C12—C11—N10—C9a	-76.0 (3)
S5—C4a—C10a—N10	-3.2 (3)	C12-C11-N10-C10a	81.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
C4—H4···N2 ⁱ	0.95	2.62	3.457 (3)	147	
С13—Н13…С11іі	0.95	2.78	3.677 (3)	159	
C13—H13…C12 ⁱⁱ	0.95	2.78	3.686 (3)	161	
C3—H3…C13 ⁱ	0.95	2.78	3.662 (3)	155	
С8—Н8…С13 ^{ііі}	0.95	2.69	3.407 (3)	133	

Symmetry codes: (i) -x+2, y+1/2, -z+3/2; (ii) x, -y-1/2, z+1/2; (iii) -x+1, -y, -z+1.